Automatically Choosing the Number of Clusters

DP-GMMs, DP-means, CH index (see also: gap statistic)

slides by
George Chen
Carnegie Mellon University
Fall 2017

GMM with k Clusters

Cluster 1

Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1}$
Gaussian covariance $=\Sigma_{1}$

Cluster K

Probability of generating a point from cluster $k=\pi_{k}$

Gaussian mean $=\mu_{k}$
Gaussian covariance $=\Sigma_{k}$

How to generate points from this GMM:

1. Flip biased k-sided coin (the sides have probabilities π_{1}, \ldots, π_{k})
2. Let Z be the side that we got (it is some value $1, \ldots, k$)
3. Sample 1 point from Gaussian mean μz, covariance Σz

Learning a GMM

Demo

Automatic Selection of k

Dirichlet Process Gaussian Mixture Model (DP-GMM):

- Number of clusters is effectively random, and can grow with the amount of data you have!
- While you don't have to choose k, you have to choose a different parameter which says basically how likely new points are to form new clusters vs join existing clusters

DP-GMM High-Level Idea

Cluster 1

Cluster $2 \quad$ Cluster 3

There is a parameter that controls how
Probability of generating a point from cluster $1=\pi_{1}$

Gaussian mean $=\mu_{1}$
Gaussian covariance $=\Sigma_{1}$
these π values roughly decay
$\pi 3$
μ_{3}
Σ_{3}

It goes on forever!

There are an infinite number of parameters
(Rough idea) How to generate points from this DP-GMM:

1. Flip biased ∞-sided coin (the sides have probabilities $\pi_{1}, \pi_{2}, \pi_{3}, \ldots$)
2. Let Z be the side that we got (it is a positive integer)
3. Sample 1 point from Gaussian mean μ_{Z}, covariance Σ_{z}

Remark: For any given dataset, when learning the DP-GMM, there aren't going to be an infinite number of clusters found

Automatic Selection of k

Dirichlet Process Gaussian Mixture Model (DP-GMM):

- Number of clusters is effectively random, and can grow with the amount of data you have!
- While you don't have to choose k, you have to choose a different parameter which says basically how likely you are to form new clusters vs try to stick to already existing clusters
- An example of a Bayesian nonparametric model (roughly: a generative model with an infinite number of parameters, where the parameters are random)

Learning a DP-GMM

Two main approaches:

- Finite approximation where you specify some maximum number of possible clusters (the algorithm will find up to that many clusters)

This is what's implemented in sklearn

- Algorithm is somewhat similar to k-means/EM for GMMs
- Algorithm output: very similar to regular GMM fitting
- Random sampling approach (no finite approximation needed!)
- Algorithm output: a bunch of samples of different cluster assignments (can pick one with highest probability)

This is what's implemented in R (package dpmixsim)

Learning a DP-GMM

Demo

k-means approximates (a special case of) learning GMM's.

What approximates learning DP-GMMs?

This next algorithm will give you a sense of how we get around specifying the number of clusters directly

DP-means

Step 0. Pick concentration parameter $\lambda>0$

Step 1. Start with everything in same cluster

DP-means

Step 0. Pick concentration parameter $\lambda>0$
Step 1. Start with everything in same cluster

DP-means

DP-means

Step 0. Pick concentration parameter $\lambda>0$
Step 1. Start with everything in same cluster

DP-means

DP-means

Step 0. Pick concentration parameter $\lambda>0$
Step 1. Start with everything in same cluster

Step 2. For each point:
(a) If it's not currently covered by gray balls, make it a new cluster center
Step 3. Recompute cluster centers
(b) Otherwise assign it to nearest cluster

DP-means

Step 0: Pick concentration parameter $\lambda>0$
Step 1: Start with everything in same cluster

DP-means

Step 0: Pick concentration
parameter $\lambda>0$
Step 1: Start with everything in same cluster

DP-means

As you saw in the DP-GMM demo (and is similar with DP-means), DP-means can produce a few extra small clusters

In practice: reassign points in small clusters to bigger clusters

DP-means

As you saw in the DP-GMM demo (and is similar with DP-means), DP-means can produce a few extra small clusters

In practice: reassign points in small clusters to bigger clusters

DP-means

As you saw in the DP-GMM demo (and is similar with DP-means), DP-means can produce a few extra small clusters

In practice: reassign points in small clusters to bigger clusters

Can recompute cluster centers

DP-means

As you saw in the DP-GMM demo (and is similar with DP-means), DP-means can produce a few extra small clusters

In practice: reassign points in small clusters to bigger clusters

Can recompute cluster centers

Big picture: DP-means \& DP-GMM have a "concentration" parameter roughly controlling size of clusters rather than number of clusters

If your problem can more naturally be thought of as having cluster sizes that should not be too large, can use DP-means/DP-GMM instead of k-means/GMM

Real example. Satellite image analysis of rural India to find villages
Each cluster is a village: don't know how many villages there are total but rough upper bound on radius of village can be specified
\rightarrow DP-means provides a decent solution!

Other Ways for Choosing k

- Choose a cost function to compute for different k
- In general, not easy! Need some intuition for what "good" clusters are
- Ideally: cost function should relate to your application of interest
- Pick k achieving lowest cost

Here's an example of a cost function you don't want to use

But hey it's worth a shot

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual Sum of Squares

Look at one cluster at a time

Residual sum of squares for cluster 1:
Cluster 1

Cluster 2

RSS $_{1}=\sum_{x \in \text { cluster } 1}\left\|x-\mu_{1}\right\|^{2}$

Residual Sum of Squares

Look at one cluster at a time

Measure distance from each point to its cluster center

Cluster 1

Repeat similar calculation for other cluster

Cluster 2
Residual sum of squares for cluster 2 :

$$
\mathrm{RSS}_{2}=\sum_{x \in \text { cluster 2 }}\left\|x-\mu_{2}\right\|^{2}
$$

Residual Sum of Squares

$\mathrm{RSS}=\mathrm{RSS}_{1}+\mathrm{RSS}_{2}=\sum_{x \in \text { cluster } 1}\left\|x-\mu_{1}\right\|^{2}+\sum_{x \in \text { cluster } 2}\left\|x-\mu_{2}\right\|^{2}$
In general if there are k clusters:

$$
\mathrm{RSS}=\sum_{g=1}^{k} \mathrm{RSS}_{g}=\sum_{g=1}^{k} \sum_{x \in \text { cluster } g}\left\|x-\mu_{g}\right\|^{2}
$$

Remark: k-means tries to minimize RSS (it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

Why is RSS not a good way to choose k ?

What is RSS when k is equal to the number of data points?

A Good Way to Choose k

RSS measures within-cluster variation

$$
W=\mathrm{RSS}=\sum_{g=1}^{k} \mathrm{RSS}_{g}=\sum_{g=1}^{k} \sum_{x \in \text { cluster } g}\left\|x-\mu_{g}\right\|^{2}
$$

Want to also measure between-cluster variation

$$
B=\sum_{\substack{g=1 \\ H \\ \text { index }}}^{k}(\text { points in cluster } g)\left\|\mu_{g}-\mu\right\|^{2}
$$

Called the CH index

A good score function to use for choosing k :
$\mathrm{CH}(k)=\frac{B \cdot(n-k)}{W \cdot(k-1)}$
$n=$ total \# points

Pick k with highest $\mathrm{CH}(k)$
(Choose k among 2, 3, ... up to pre-specified max)

