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GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1
Gaussian covariance = 𝛴1

Gaussian mean = 𝜇k
Gaussian covariance = 𝛴k

How to generate points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

…



Learning a GMM

Demo



Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with 
the amount of data you have!

• While you don't have to choose k, you have to choose a 
different parameter which says basically how likely new points 
are to form new clusters vs join existing clusters



DP-GMM High-Level Idea
Cluster 1

Probability of generating a 
point from cluster 1 = 𝜋1

Gaussian mean = 𝜇1
Gaussian covariance = 𝛴1

(Rough idea) How to generate points from this DP-GMM:
1. Flip biased ∞-sided coin (the sides have probabilities 𝜋1, 𝜋2, 𝜋3, …)
2. Let Z be the side that we got (it is a positive integer)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

Cluster 2

𝜋2

𝜇2
𝛴2

Cluster 3

𝜋3

𝜇3
𝛴3

…
It goes on 

forever!

There is a parameter that controls how 
these 𝜋 values roughly decay

Remark: For any given dataset, when learning the DP-GMM, 
there aren't going to be an infinite number of clusters found

There are an infinite number of parameters



Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with 
the amount of data you have!

• While you don't have to choose k, you have to choose a 
different parameter which says basically how likely you are to 
form new clusters vs try to stick to already existing clusters

• An example of a Bayesian nonparametric model  
(roughly: a generative model with an infinite number of 
parameters, where the parameters are random)



Learning a DP-GMM
Two main approaches:

• Finite approximation where you specify some maximum 
number of possible clusters (the algorithm will find up to that 
many clusters)

• Random sampling approach (no finite approximation needed!)

• Algorithm is somewhat similar to k-means/EM for GMMs

• Algorithm output: very similar to regular GMM fitting

• Algorithm output: a bunch of samples of different cluster 
assignments (can pick one with highest probability)

This is what’s implemented in sklearn

This is what’s implemented in R (package dpmixsim)



Learning a DP-GMM

Demo



This next algorithm will give you a sense of how we get around 
specifying the number of clusters directly

k-means approximates 
(a special case of) learning GMM's.

What approximates learning DP-GMMs?



DP-means

Step 1. Start with 
everything in same cluster

Step 0. Pick concentration 
parameter    > 0λ
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DP-means

Step 1. Start with 
everything in same cluster

Step 0. Pick concentration 
parameter    > 0λ



DP-means

“Step 2b”. Assign 
closest points to 
current clusters

“Step 2a”. Pick point 
outside of gray 

coverage to make 
new cluster

Step 1. Start with 
everything in same cluster

Step 0. Pick concentration 
parameter    > 0λ

Step 3. Recompute 
cluster centers
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DP-means

“Step 2b”. Assign 
closest points to 
current clusters

“Step 2a”. Pick point 
outside of gray 

coverage to make 
new cluster

Step 1. Start with 
everything in same cluster

Step 0. Pick concentration 
parameter    > 0λ

Step 3. Recompute 
cluster centers



DP-means

Step 2. For each point:
(a) If it’s not currently 

covered by gray 
balls, make it a new 
cluster center

(b) Otherwise assign it 
to nearest cluster

Step 1. Start with 
everything in same cluster

Step 0. Pick concentration 
parameter    > 0λ

Step 3. Recompute 
cluster centers



DP-means

Step 1: Start with 
everything in same cluster

Step 0: Pick concentration 
parameter    > 0λ

Step 2. For each point:

Step 3. Recompute 
cluster centers

(a) If it’s not currently 
covered by gray 
balls, make it a new 
cluster center

(b) Otherwise assign it 
to nearest cluster



DP-means

Step 1: Start with 
everything in same cluster

Step 0: Pick concentration 
parameter    > 0λ

Step 2. For each point:

Step 3. Recompute 
cluster centers

(a) If it’s not currently 
covered by gray 
balls, make it a new 
cluster center

(b) Otherwise assign it 
to nearest cluster

Repeat until convergence:



DP-means
As you saw in the DP-GMM demo 

(and is similar with DP-means), 
DP-means can produce a few 

extra small clusters

In practice: reassign points in small  
clusters to bigger clusters
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DP-means
As you saw in the DP-GMM demo 

(and is similar with DP-means), 
DP-means can produce a few 

extra small clusters

In practice: reassign points in small  
clusters to bigger clusters

Can recompute cluster centers



Big picture: DP-means & DP-GMM 
have a “concentration” parameter 
roughly controlling size of clusters 

rather than number of clusters
If your problem can more naturally be thought of as 

having cluster sizes that should not be too large, can use 
DP-means/DP-GMM instead of k-means/GMM

Real example. Satellite image analysis of rural India to find villages
Each cluster is a village: don’t know how many villages there are 
total but rough upper bound on radius of village can be specified

➔ DP-means provides a decent solution!



Other Ways for Choosing k

• Choose a cost function to compute for different k

• In general, not easy! Need some intuition for what “good” 
clusters are

• Pick k achieving lowest cost

• Ideally: cost function should relate to your application of 
interest



Here’s an example of a cost 
function you don’t want to use

But hey it’s worth a shot



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:

Measure distance 
from each point to 
its cluster center

RSS1 =
∑

x∈cluster 1

∥x − µ1∥2



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Repeat similar calculation 
for other cluster

Residual sum of squares for cluster 2:

Measure distance 
from each point to 
its cluster center

RSS2 =
∑

x∈cluster 2

∥x − µ2∥2



Repeat similar calculation 
for other cluster

Measure distance 
from each point to 
its cluster center

Residual Sum of Squares

Cluster 1

Cluster 2

In general if there are k clusters:

Remark: k-means tries to minimize RSS  
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

RSS = RSS1 + RSS2 =
∑

x∈cluster 1

∥x − µ1∥2 +
∑

x∈cluster 2

∥x − µ2∥2

RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2



Why is RSS not a good way 
to choose k?

What is RSS when k is equal to the number of data points?



A Good Way to Choose k

Want to also measure between-cluster variation

RSS measures within-cluster variation

W = RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

B =
k∑

g=1

(# points in cluster g)∥µg − µ∥2

mean of all points
A good score function to use for choosing k:

Pick k with highest CH(k)

n = total # points
(Choose k among 2, 3, … up to 
pre-specified max)

Another good way is called the gap statistic [Tibshirani et al 2001]

Called the CH index 
[Calinski and Harabasz 1974]

CH(k ) =
B · (n − k )
W · (k − 1)


